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Capacity Planning Under Uncertainty:
Developing Local Area Strategies for Integrating
Distributed Resources

Charles D. Feinstein*, Peter A. Morris** and Stephen W. Chapel***

This paper presents a methodology that helps DR planners evaluate
Strategic investment policies under uncertainty. Application of the methodology
will not only lower utilities’ costs, but also help them prepare for the future with
contingency plans and a deeper undersianding of the opportunities and risks they
face. The formulation responds to the need to evaluate future options as
uncertainty unfolds over time. For such problems, the joint consideration of
dynamics and uncertainty makes the problem much too large for conventional
probabilistic analysis methods and places it beyond the scope of conventional
deterministic engineering analyses. The problem is formulated as a dynamic
optimization problem under uncertainty. A practical solution technique for
solving the problem based on a compact specification of the system state is
introduced. An example, taken from actual practice, is presented. The potentially
large economic value of DR investments in providing managerial flexibility is
quantified. We demonstrate that the optimal level of DR investment found by our
approach is superior o the level of DR investment specified by existing
methodologies. Although the concepls are presented in the context of electric
utility distributed resources planning, they are more widely applicable 1o other
strategic investment problems.

INTRODUCTION

This paper discusses an approach to the problem of Distributed
Resources (DR) planning in the electric utility industry. The approach was
developed through a set of EPRI-coordinated projects conducted with a group
of utility participants (see acknowledgments). The Distributed Resources concept
is that generation and storage can be distributed throughout the transmission and
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distribution (T&D) system and serve as an alternative to central generation
investment and T&D system expansion. The distributed generation may be based
on modular and perhaps renewable technologies, modular storage facilities, and
specially designed demand-side management programs.

The DR concept responds to changes in the conditions affecting the
production, transmission, and distribution of electrical energy. These conditions
include increased competition (present and anticipated), broad attention to the
environmental consequences of business decisions, changes in capital investment
patterns that have resulted in a greater investment in T&D assets than in
centrally located production facilities, and development of alternate production
technologies. These changing conditions suggest that there are economic benefits
to be achieved if modular generation or storage units are placed in the local
transmission or distribution system close to selected loads. Further discussion
of the DR concept and its emergence as a planning principle may be found in
several reports and reviews (Feinstein (1993), Pupp (1993), Feinstein et al.
(1997c)).

The transmission and distribution system is designed 1o meet infrequent
but large peak loading. T&D is expensive and the cost is growing; in fact,
capital investment in T&D has surpassed investment in generation (Edison
(1994), Electrical World (1995)). This suggests that it may be valuable to
explore opportunities to shift capital by considering other alternatives. Indeed,
recent studies suggest that modular generation or storage units, augmented by
specially-designed demand-side management programs, can be used to reduce
infrequent load peaks, and do so with less cost than reinforcing or expanding the
local T&D system (Zaininger et al. (1990), Orans et al. (1991), Shugar et al.
(1991), Chapel (1993), Hoff (1996)). Earlier reports have identified different
benefits of siting small-scale dispersed storage and generation assets in a utility’s
T&D system (Chovaniec et al. (1978), Ma et al. {1979), Lee et al. (1979),
Bullard (1980), Davitian (1981), Finger (1981), Koenig (1981), Tabors et al.
(1981), Van Horne et al. (1981), Ma et al. (1982), Rigney et al. (1984),
Sobieski (1985)). These benefits include reduced capacity requirements of the
T&D systemn, improved reliability, and lowered losses.

BACKGROUND

The focus of this paper is on methodology. [t is important to note that
there is at present no generally accepted methodology for DR planning.
However, with relatively minor variations, four common assumptions
characterize the methodologies used to investigate DR planning and measure the
value of DR investments:



Capacity Planning Under Uncertainty / 87

. Each methodology requires the prior specitication of a conventional
deterministic expansion plan for the T&D svstem. Each investment in

the expansion plan is assumed to be made at a specific time in the
future.

. The future peak load on the system is assumed known with certainty
over the entire planning period.

. The capital costs and operating costs associated with future investments
are assumed known with certainty over the entire planning period.

. The benefit of investing in distributed resources is assumed to be
achieved by deferring the capital investments in the conventional
expansion plan.

Practice has revealed that such assumptions are insufficient for DR
planning. The shortcomings include the following. First, distribution planners
rarely have a prior expansion plan that can be specitied for an arbitrarily long
period of time (typically 10, 15, or 20 years in the future). Second, the peak
load on the system is quite uncertain; it cannot be predicted with certainty even
for a short period in the future. We have found utility planners to be
uncomfortable with the accuracy of long term deterministic forecasts. Third, the
future costs of technology are uncertain. Fourth, contrary to a commonly-held
belief, we will demonstrate that deferring a given conventional expansion plan
for the longest time possible does nor yield the least-cost solution to DR
planning (see also Feinstein et al. (1997¢)).

Planning without explicitly dealing with uncertainty ignores the very
real value of management flexibility, that is, the ability to change directions as
the future unfolds. We argue below that to ignore management flexibility is to
ignore what may be the greatest value provided by DR.

The methodology for DR planning described here is designed to
overcome these difficulties. The main elements of the methodology were
highlighted, independently, as “necessary elements of a comprehensive analysis”
for integrated resource planning with renewable resources, a particularly
interesting aspect of DR planning (Logan et al. (1995)). The methodology does
not require prior specification of an e¢xpansion plan, nor is the objective to
maximize the deferral of conventional investments. Rather, the methodology
determines an optimal mixture of distributed resources and conventional
investments that minimizes the expected net present value of total system costs
of serving load. The methodology recognizes that the future is uncertain and
allows the user to characterize the important uncertainties that govern the
investment problem. Moreover, the methodology explicitly recognizes and
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attaches an economic value to the management flexibility inherent in DR
options. Finally, in recognition of the strategic nature of the problem, the
general principle we have followed is to substitute mathematical structure and
modeling assumptions for extensive data sets. The methodology has been applied
successfully to a set of real wtility problems (Lesser (1996), Feinstein (1996),
Morris (1996), Chow (1996), Chapel et al. (1996)). Although the methodology
is presented in the context of DR strategy, it is more widely applicable to other
strategic investment problems.

PROBLEM FORMULATION

The objective of the DR planning problem is to meet customers’
capacity and energy needs over the indefinite future at the lowest expected
present value of all future costs. There are several aspects of this problem
statement that require further discussion. It is convenient to develop the ideas in
stages. We discuss the problem formulation in some detail in this paper because
a fundamental difference between our approach and results and other approaches
and results is the formulation itself.

Deterministic DR Problem

We begin with a deterministic formulation assuming continuous time
and infinitely divisible assets, and then extend the formulation to consider lumpy
investments under uncertainty. The minimum cost objective may seem
innocuous, but in fact represents an essential difference between our
methodology and other methodologies. Other approaches find a solution that
delays the construction of new T&D facilities by investing in DR until the total
cost of the DR investments exceeds the total benefit of T&D delay (Orans et al,
(1994), Hoff (1996)). This solution is not least cost. The differences in the
approaches are shown in Figure 1 (taken from Feinstein et al. (1997e)). The
total cost is minimized when the difference between the cost savings due to
deferral of T&D and the cost of this deferral, the cost of DR, is maximized.
This occurs when the marginal cost of deferring equals the marginal benefit,
Since the maximum T&D deferral time occurs at the point at which the toral DR
cost equals the rotal benefit of deferral, the minimum cost solution is earlier and
requires less DR investment. Stated simply, maximal deferral is not the least-
cost strategy and, in fact, undervalues the benefits of DR.
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Figure 1. Relationship between Least Cost and Maximum Deferral Solutions
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The solution to the deterministic DR planning problem is a sequence of
capital investments in technology that provides the capacity necessary to meet
the area load over time. Let k(t) be a vector whose i* component, k;fz), is the
amount of capacity of type i in the system at time 7. The solution to the
deterministic DR planning problem is to specify the function k(f) from some
initial time z, to o, which represents the indefinite future. Let L(#) represent the
aggregate load (i.e., electricity demand) that must be satisfied by the system at
time t. Let Cft, k()] be the amount of effective capacity provided by vector k(1}
of technologies at time ¢. Then, in order that a soluation k(t) be sufficient to
satisfy the load, the constraint Cft, k(z)] = L(r) must be satisfied. When this
constraint is satisfied, no demand is unserved. If we idealize the notion of
investment in capacity, we may consider that k{#) is a smooth function and that
the derivative dk(t)/dt = k'(t) is well-defined. Let V{t, L(), k(t), k'(t)] specify
the instantaneous cost rate at time ¢ that results from serving the actual joad L(r)
with capacity k() while making investments at the rate k'(t). The objective of
the investment policy is to minimize the present value of these costs over the
planning period. Let p represent the instantaneous interest rate, assumed to be
constant, and let the initial conditions on load and system capacity be denoted
by L, and k, respectively. Then the optimal deterministic DR investment policy
will be the vector function (z) that solves the following problem:
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Minimize f e PV, LB, kD), k()] (1a)
subject to  C[t, k(®] > L(2) (ib)
L) =L, (1c)

k() =k, (1d)

This is a problem in the calculus of variations whose solution is a
function k() that satisfies a set of necessary conditions that includes the Euler-
Lagrange differential equation (Bliss (1925)). Finding a solution to that equation
can be a formidable challenge, as would be the complete specification of the
functions V and C in a form amenable to analysis. More importantly, the
investment in capacity assets is not a smooth process. it is more appropriate to
consider that the investments in capacity occur at discrete times and in discrete
amounts.

We may then reformulate the problem as follows, It is natural to
consider that the time interval {r,, o) is composed of periods of possibly
variable duration, indexed by the variable 7. Let x(t) be the decision vector of
additional capacity investments made during period ¢. This may also include
investments that are retired from service during the period, so any component
of x(z) could be negative. Let Ift, x(1}] represent the investment cost of acquiring
technologies x(r) at the beginning of period ¢, Let k(1) be the vector of capacity
installed in the system prior to period . Then k(z+1) = k(z} + x{z) is the vector
of capacity installed at the beginning of period r-++1. As before, let L() be the
load on the system at the beginning of period ¢. Let Vfr, L{1), k{r), x(t)] represent
the operating cost of serving the load during period ¢ g:ven that L(r) is the load
at the beginning of the period, k(z) is the initial capital stock and new
investments x{¢) are made during the period. The solution to the discrete
deterministic DR planning problem is the investment sequence {x(f). 1, <1< oo}
that solves
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Minimize ¥ e P12, x(8)) + V{2, L(£)  k(£),x())] (2a)
subjectto CL(t,k(®) + x(D)] = L(?) (2b)
Lg)=L, (20

k(t)) =k, 2d)

The key idea embedded in the above formulation is that time is not
indexed by a fixed interval, say year by year, which would define a problem of
enormous dimension (e.g., 10 possible technology choices over a 10-year
planning period implies 10'°, or 10 billion separate strategies that would have
to be evaluated). In this formulation, we assume that under current regulatory
and economic conditions there will be no cost savings or benefits associated with
early installation. Thus, since there is no value to overcapacity, the formulation
recognizes that capacity decisions need only be made when capacity is needed
(e.g., if the technologies each supplied two years of load growth, there would
be only 10%, or 100,000 separate strategies that would have to be evaluated).
The resulting deterministic planning problem is in the form of a discrete optimal
contro} problem, with x{t) as the control variable. The optimal solution to this
problem is again a function x(t) that satisfies a set of necessary conditions that
are variants of the Euler-Lagrange equations, first developed by Pontryagin and
extended to discrete time models (Pontryagin et al. (1962), Kharatishvili (1967)).
The discretization of the problem makes it somewhat easier to solve, although
the functions V and C still need to be expressed analytically, if one is to make
efficient use of the necessary conditions to characterize the solution.

Further, there are two other aspects of the problem that formulation (2)
does not address directly: first, the length of each period is unspecified, and
second, the behavior of the load during each period and from period to period
is unspecified. We address these issues by incorporating a stochastic-process
model of load uncertainty into the formulation, and explicitly modeling the
ability of the utility to adopt strategies that respond flexibly as the uncertainty

resolves over time.
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Probabilistic DR Problem: The Value of Management Flexibility

Managerial flexibility in the face of uncertainty about the future is
possibly the greatest benefit provided by modular DR technologies to utility
planners. Before proceeding, it is useful to consider a simple example. Suppose
a planner is faced with a certain load growth of 10 units this year. However, the
load next year is uncertain: there is a 60 percent chance of a 90 unit increase
due to a potential major industrial electricity user moving into the area, and a
40 percent chance of no increase. In either case, no subsequent load growth is
expected. The planner has two alternatives: a large conventional technology with
100 units of capacity at a capital cost of $100M or a DR technology with 10
units of capacity at a capital cost of $20M (twice the large technology’s unit
cost). Given a discount factor of 0.9 (i.e., $1.00 in & year is valued at $0.90
today), the traditional deterministic approach would assume for the second-year
load the most-likely value of 90 units, in which case the least-cost alternative is
to install the large technology immediately to cover the two-year load (PV of
$100M versus wait-until-year-2 PV of $110M = $20M + 0.9x$100M).
Compare this with a “Wait and See” strategy of installing the DR technology,
and then installing the large technology only if load grows. The expected present
value of the Wait-and-See strategy is easily computed as $74M (= $20M + 0.6
x 0.9 x $100M + 0.4 x $0M). Thus, the DR alternative in conjunction with the
flexible Wait-and-See strategy saves the utility planner £26M in expected present
value, more than the cost of the DR technology. The value of the DR alternative
comes not from its cost characteristics, but from the management fiexibility it
affords the utility planner. Leaving uncertainty out of a planning analysis
systematically undervalues DR alternatives.

We formalize these ideas by postulating that the underlying load
dynamics is governed by a stochastic process so that L(r) is a random variable
(a specific stochastic process is proposed below). It follows that the cost of
meeting the load, the function Vft, L), k(t), x(t}], is also a random variable.
Therefore, the proper form for the objective (2a) is the expected present value
of the cash flow stream. Denoting the expectation operator by E, we formulate
the stochastic optimal control problem:

Minimize ECY" ¥ [1(6, () + Y, L), k() 5]

t=t,

+eTY_[T, LT), (D)}

(3a)

subjectto Clt,k(f) + x(t)] = L(r) (3b)



Capacity Planning Under Uncertainty / 93

Le) =L, (3c)

ke,) =k, (3d)

where V., [T, L(T), k(T})] is the expected present value of the cost from time T
to infinity, based on estimates of the future capital and operations costs of
serving load.

Conceptually, there is a great gulf between problems (2) and (3} not
suggested, perhaps, by the apparent similarity in notation. In particular, the
following modeling issues must be addressed, which are discussed in the section
below:

(a) How can the probabilistic dynamics of load be specified?

(b) How can the probability distribution on time to the next decision be
specified?

(¢) Is there a practical solution technique for finding the optimal decision
strategy and associated costs in real utility DR problems?

(d) Equation (3) contains an implicit assumption that the optimal policy and
resulting future costs are functions only of current conditions rather than
the entire time history up to time t. How is this assumption justified?

(&) How can we specify a2 meaningful terminal value model?

MODELING ISSUES

The five modeling issues are interrelated. Due to space limitations, we
provide an overview of the key ideas in our approach to each issue. The
references cited contain further details.

Modeling Load Dynamics and Uncertainty

Two factors motivated our approach for characterizing load uncertainty.
First, for distribution planning, a key issue is at what point in the future will
load growth result in new capacity requirements? Thus, a complete description
of potential load trajectories over time is required in order to specify the
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probability distribution on time to the next decision. Second, based on extensive
work with utility planners, we found that it is desirable to describe load growth
in terms of multiple trends that persist for uncertain durations. For example,
area load typically can grow at some steady rate for several years and then
transition to a rapid growth spurt for a period of time. This suggests that a good
way to mode] future load conditions is to characterize likelihoods of the possible
trends and their durations. A simple yet robust mathematical representation of
such a phenomenon that captures the complexity and requires relatively few
parameters to be estimated is a Markov chain described by a transition matrix
of conditional probabilities. If there are n discrete load growth states, then n(n-
1) conditional probabilities must be specified. We have developed a method for
estimating these parameters (Feinstein et al. (1997a, b)).

The Markov model is illustrated in Figure 2. The top half of the figure
shows that, over time, load may follow a sequence of different growth trends
with varying durations. The bottom half of the figure illustrates how transition
probabilities can be used to represent the uncertaintv in the level of the next
trend and the uncertainty in the time to the next trend. In this case, there are
three trend states. For example, if load is growing at the medium rate, there is
a 0.8 chance that the medium growth trend will persist into the next period, a
0.1 chance of a transition to the low trend and a 0.1 chance of a transition to the
high trend. This characterization of load also represents the tendency to stay in
a given trend, since the average time in a trend may be expressed as:

Average Time In Trend = 1 /[ 1 - p (staying in same trend) }

For exampie, for the given probabilities, the average time that the load growth
will persist in the low state is 10 periods.

It is worth noting how the Markov load model differs from the more
traditional approaches. A standard technique is to esrimate an average growth
rate by fitting a regression line through historical data and to estimate variance
using the regression residuals. This ignores trends or correlations in the data
and, in so doing, systematically underestimates the future load uncertainty (see
Figure 3). Moreover, the regression model presupposes that additional
observations provide no information. In the Markov setting, the likelihood of
future load behavior depends on the current conditions, so observations modify
forecasts.
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Figure 2. Probabilistic Dynamics of Load Growth
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The Markov model also responds to the fact that the distant past is
rarely representative of the future, especially for local area planning. Growth
trends are driven by real events such as changes in zoning laws and shifts in the
local economic conditions. If the future is believed to be different from the past,
the model allows the user to specify appropriate parameters that capture those
beliefs.

Modeling Uncertainty in Time to the Next Decision

Constraint {3b) implies that no unserved energy is permitted during any
period, an assumption required by the utility planners with whom we have
worked. This suggests that the time to the next capacity decision depends on the
amount of capacity installed and on the load growth.
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Figure 3. Comparison of Uncertainty Ranges Between Regression and
Markov Models
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The Markov load model may be used to determine the dynamic state
probabilities that characterize the chance that the cumulative load growth will
grow from any level L to any higher level L’ over a period of length 7. From
these state probabilities, we then determine the first-passage-time probability
distribution, which is the probability that starting at level L, cumulative load will
reach ievel L’ for the first time in exactly 7 periods /see Howard (1971)). If we
define, for a given capacity installation of size C, L' = L + C, the distribution
on time to the next decision is identical to the first passage time distribution.

In practice, we employ a discrete three-branch approximation that
matches the first five moments of the actual distribution. This approximation is
based on Gaussian quadrature (Miller et al. (1983)). For further details on the
dynamic probabilistic model of load growth, see Feinstein et al. (1997a, b).

Dynamic Programming Solution Technique

A powerful approach to solving a stochastic control problem is to apply
Bellman’s principle of optimality (Bellman (1957)). This principle suggests that
a complex problem, such as (3), can be viewed as a sequence of simpler
problems. The solution procedure that incorperates this principle is known as
dynamic programming. The decision variables in the problem are the various
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investment alternatives. As described above, the timing of the decisions is
related to the load uncertainty and the incremental capacity provided by each
investment.

We emphasize that dynamic programming is not an algorithm. Rather,
successful application of the procedure is based on the art of mathematical
modeling rather than on numerical aspects of problem solution. For further
discussion, the reader may consult references on dynamic programming
(Bellman (1957), Hillier et al. (1986)). We next describe how the modeling
ideas presented in this section enable us to create a structure that permits
successful application of dynamic programming.

Characterizing the System State

The number of computations required for a solution grows exponentially
as the size of the problem increases. There is no general procedure for handling
this so-called “curse of dimensionality,” but there is a unifying concept, the
notion of state. We introduce some terminology and then illustrate the idea with
an example.

We define a rrajectory as a sequence of decisions and outcomes.
Trajectories can be thought of as paths through a tree representation of a
dynamic programming problem. Trajectories can be of any length, depending
on the number of stages described by the trajectory. A sample trajectory could
be: install two 500 kW engines at time zero; observe that the time to the next
decision is 2.4 years; at that time install a 20 MV A substation, which lasts for
the next 7.6 years (and beyond), the end of the finite planning period of 10
years.

Let x, represent the results of all lotteries that occur at stage k in the
dynamic program (i.e., the resolution of all load uncertainties), where “stage”
refers to the time at which a decision is made. Let a, represent the action taken
at stage k, typically an investment decision. A trajectory of length m, then, is
the sequence: {a,, X;, @, X5, ..., @, X,}.

Formally, a szare is a vector that is the result of a mapping ¢ applied
to a trajectory. The mapping need not be 1-1, and in general will not be.

We define a three-dimensional state variable ¢ = (¢,, ¢, @,) that
defines an equivalence class of trajectories. The desirable property of such an
equivalence class is such that for all trajectories that have the same state, the
future (i.e., the set of all decisions, costs and probabilities) appears identical
viewed from any member of the class. Therefore, the future optimal decisions
and cost computations need to be specified only once for ali the members of the
equivalence class. This greatly reduces the number of computations required to
solve problem (3).
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We define ¢, = permutation ({a, , a,, ..., @,,}), which means that the
first component of the state is the collection of all investment decisions made
through stage m, independent of the order in which they were made. This makes
sense as a state descriptor because electric utilities economically dispatch their
technologies on hand so as to minimize operating cost, independently of their
capital cost or when they were installed.

We define ¢, = L,a;, if I g = L x, , else ¢, = . If ¢, is not
empty, then the capacity of the investments made along the trajectory is equal
to the load growth along the trajectory. This means that the total load in a state
is equal to the total capacity installed, so that we need not define total load as
a separate state component. If ¢, is empty, a useful equivalence class cannot be
formed.

We define ¢, = x,, , to be the most recent load growth rate. The
Markov load model implies that the current load state is sufficient to describe
future load growth behavior,

An example will illustrate the notion of state and how it can
dramatically reduce the number of computations in a dynamic programming
solution. Consider a problem with 3 stages, such that at each stage one of three
decisions {d,, d,, d,} may be selected, followed by one of three possible load
growth rates {I, m, h}. For simplicity, in this example, let us assume that the
load levels are independent. An example of a complete trajectory is the sequence
{dy, h; d,, I; d,, m}. There are (3 x 3)> = 729 unique trajectories for this
problem. The total number of computations that would be required to solve the
problem, without considering the effect of a state-based equivalence class, is 9
+ 81 + 729 = 819 path-cost computations. Now consider what happens when
a state variable, the total amount of capacity installed, is introduced. The first
stage is as before. Entering the second stage, there are three unique capacity
states, so that 3 x 9 = 27 computations are required. Entering the third stage,
there are only six unique capacity states, so that 6 X 9 = 54 computations are
required. Thus, using the concept of state, the total number of computations has
been reduced to 9 + 27 + 54 = 90. For larger problems, the effect is far more
striking. In a recent application, the application of the state concept reduced the
size of the problem from roughly 100 million path calculations to several
thousands.

Terminal Value Model

A final formulation issue concerns the infinite time horizon in the
objective function (3a). Although we require a solution over the indefinite
future, we are seeking a practical, usable approach to ihe DR planning problem.
We have found that decision makers are able to provide sufficiently accurate
data to support detailed decision making until some rinite time 7. Beyond that
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time, which varies for each decision maker, there is more ambiguity about
future conditions.

It is important to stress that although the future conditions influence the
near-term decisions, it becomes less and less appropriate to model the system
in detail as we move into the distant future. The essential idea in the formulation
of the terminal value model V,, [T, L(T), k(T)] is that it ought to represent the
best estimate of the “cost-to-go” from any terminal point. By assuming that
near-term investments will be operated until their lifetimes expire, and assessing
values of capital and operating costs of future assets, the cost-to-go can be
relatively simply expressed (Feinstein et al., 1997d). The decision maker can
vary the assessments of the future and observe how the optimal policy responds.

OTHER ISSUES

For brevity, we outline three additional issues that can also be
addressed in the context of the DR strategy model.

Additional Uncertainties

We have solved examples using problem formulation (3) that included
the effects of uncertain weather-related load changes, the consequences of
uncertainty about future siting of investmenis such as substations and
transmission lines, and the results of uncertainty in future fuel costs. We
illustrate the approach of extending the problem while preserving the formulation
with a brief example of weather-related uncertainties.

One consequence of uncertain weather is that the system load may be
abruptly increased. Consider the effect of uncertain weather at a remote ski area
with its own snow-making equipment, which is used only if there is insufficient
natural snow (Lesser (1996)). In each year, the utility faces a lottery on the
effect of weather on peak demand. We translated this lottery into a probability
distribution on the load level parameters of the Markov model discussed above.
We were then able to manipulate the extended model with uncertain parameters
into a Markov model of the original form with deterministic but adjusted
parameters, thus preserving the structure of problem formulation (3). Also, a
decision variable was introduced into formulation (3) that specified how much
capacity should be held in reserve to meet weather contingencies. Based on the
cost of unserved energy, the optimal value of incremental capacity was
determined.
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Investment Leadtimes

We define leadtime as the time that must elapse between committing to
an investment and actually having the investment available. Leadtime requires
decisions to be made at earlier times. If the leadtimes for all investments were
identical, the phenomenon would present no modeling difficulty. However,
leadtimes generally vary by alternative and there is no obvious way to adjust the
time to the next decision without knowing what that next decision will be,

Leadtime has two primary impacts. First, leadtime increases the
uncertainty about conditions that will obtain when the investment is available.
When leadtime is present, the Markov model of load dynamics finds the
probability distribution on the time to the next decision by making one
adjustment: the capacity added at the leadtime is the capacity of the alternative
under consideration plus the capacity needed to serve the expected load growth
during the leadtime. Second, leadtime affects the timing of cash flows. An
investment with non-zero leadtime requires cash flows to occur earlier than the
time-to-the-next decision logic would suggest if leadtime were zero. Leadtime
can be thought of as a requirement for advance payment. The strategy model
adjusts for leadtime by shifting all investment costs forward by the leadtime.
These adjustments permit the dynamic programming algorithm to solve what
appears to be a zero-leadtime problem while in fact evaluating the cash flows
and adjusting the uncertainty ranges as if actual leadtimes were included.

Area Load Saturation

We observed that planners generally do not assume that a local area
will experience positive growth indefinitely. Based on physical constraints, at
some future time the peak load will often stabilize at a relatively fixed level. As
an extension to the Markov model of load dynamics, we created a method to
capture this phenomenon of load saturation. Load saturation can be an important
strategic planning phenomenon, since the time over which an investment satisfies
demand depends on the dynamics of load growth. Slowly saturating areas permit
investments to be delayed. When the saturation level is uncertain, the model
permits planners to investigate the increased risk of overcapacity.

The load saturation model allows the planner flexibility in specifying
both the load range over which the saturation effect occurs and the rate at which
the dynamically varying load approaches saturation. A popular alternative is to
permit the load to approach the saturation load asymptotically at some
exponentially decaying rate specified by the planner.
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USING THE MODELING APPROACH
An Example

The soluticn determined by the strategy model is the optimal policy for
local area expansion. We have defined a policy as a sequence of contingent
investment decisions that occur at specific times conditional on the uncertainties
that have been resclved.

We describe a strategy problem based on an actual case. The problem
involved three different kinds of investments. Investment F is a 4.5 MW
capacity feeder and investment S is a 20 MV A substation. Distributed resources
investments included B1l, B2, B3, B4, and B5. Each of these represents a
collection of distributed resources such as engines and storage devices. Bl, for
example, has cumulative capacity 4.5 MW, and is designed to be installed prior
to either a feeder or substation. B4 is a similar ccllection of distributed resources
with cumulative capacity 4.9 MW, designed to be installed afier a feeder. The
cost and probability data were taken from the actual case.

Figure 4 displays the optimal policy as 2 sequence of contingent
decisions. Time is recorded horizontaily. The solution to the problem has
optimal cost $2,516 (all costs are $000). The first investment decision, install
alternative Bi, occurs at the beginning of the planning period, at time zero
(t=0.00). As noted above, load growth uncertainty was translated into a discrete
probability distribution on the time required for load growth to exhaust the
capacity of the investment, thus determining the time to the next decision. For
B1, the discrete probability distribution on time to the next decision is defined
by the probabilities {0.117, 0.722, and 0.161] with corresponding durations
{8.66, 5.49, and 2.91}.

The next investment decision depends on the reselution of the load
growth uncertainty. If the first or second outcomes were to occur, which
correspond to relatively low or moderate load growth, respectively, the optimal
decision would be to select alternative F at time 8.66 or time 5.49, as denoted
by the letter in the box. If the third outcome were to occur, which corresponds
to relatively rapid load growth, the optimal decision would be to select
alternative S at time 2.91.

After making the second investment decision, the time that load takes
to exhaust the additional capacity is observed. The finite time horizon selected
for this example is 10 years. Therefore, alternative F has sufficient capacity to
meet the load growth under any condition until the end of the planning period,
if the prior load growth were tow. If the prior load growth were moderate, the
capacity provided by alternative F installed at time 5.48 may last until the end
of the planning period. This occurs with probability 0.134, for a iow load
growth outcome, and probability 0.701, for a moderate load growth outcome.
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Figure 4. Optimal Policy Integrating Distributed Resources
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If the load growth were relatively rapid, which occurs with probability 0.165,
alternative F would be exhausted in an additional 2.71 years, so that at time
5.49 + 2.71 = 8.20, additional capacity would be required. At that time, the
optimal decision is to install B4, which provides capacity sufficient for
incremental load until the end of the planning period. After installing alternative
S, which occurred at time 2.91, the capacity provided is sufficiently large so that
all additional load within the 10-year planning period can be satisfied.

Value of Modularity

Central to the idea of distributed resources as an approach to
infrastructure investment planning is the ability of large-scale, non-modular
investments to be deferred, with cost savings, by smaller scale modular
investments (Feinstein (1993), Pupp (1993), Feinstemn et al. (1997a)). It is
important to quantify the vaiue of such modular investments. The problem
formulation (3) lends itself to such a quantification by perturbing the solution to
discover the value of modularity. A similar approach was taken in Morris et al.
(1994},
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The main question explored in this example is whether the distributed
resources can defer the more traditional investments under uncertainty. The
optimal solution indicates that such a strategy is appropriate. That is, one way
to interpret the optimal strategy is that distributed resources (B1) are installed
to defer the substation or the feeder. A second collection of distributed
resources, B2, designed to precede the feeder, is not selected in the optimal
solution. After installing the feeder, the substation can be deferred even further
in the rapid load growth case if distributed resources B4 are selected.

A further question is how valuable are the distributed resources? One
way to answer the guestion is to consider the policies and costs if the distributed
resources are unavailable. In this case, the optimal policy is to invest in the
substation immediately. The substation lasts until the ten year horizon under all
load growth cases. The present value of this policy is $3,253. Recall that the
optimal policy with DR has present value $2,516. Thus the modular investments
provide a cost savings of somewhat greater than 20 percent. We make no
general claim about the value of distributed resources, but it is interesting to
note that savings of this order of magnitude have been reported in other analyses
as well (Orans et al. (1991), Shugar et al. (1991}, Chapel et al. {1993), Chow
(1996), Lesser (1996)).

An interesting case is to eliminate B1. so that distributed resources
could not be used before a feeder were installed. In this case, the optimal policy
cost drops to $3,152 (compared with $3,253 ror the substation alone). The
optimal policy installs the feeder and uses distributed resources B4 and B5 to
defer the substation (Figure 5). Alternatively, eliminating B4 and BS and
restoring Bl yields an integrated policy with expected cost $2,578 (Figure 6).
This indicates that the distributed rescurces are most valuable early in the
planning period, when they can be used to defer the substation and the feeder.
That is, early application of distributed resources in this particular example
yields 20 percent reduction in total costs, while late application of distributed
resources yields approximately 3 percent in savings.

Applying the maximal deferral logic (Orans et al. (1994), Hoff (1996))
to this problem yields the policy to defer the subsiation by installing both B1 and
F. At the nominal growth rate of approximately two percent per year, this policy
delays the substation approximately nine and onc-half years. The model can be
used to evaluate this policy under uncertainty by basing the terminal value model
on the cost of a substation. Under that assumption, which is implicit in the
deferral logic, the expected cost of this policy is $2,272. As we have discussed
earlier (see Figure 1), the maximal deferral logic overshoots the optimum. The
optimal solution is to install only Bl before the substation, which provides an
expected deferral of 5.4 years with expected cost $2,178, approximately 5
percent lower.
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Figure 5. Optimal Policy with No Distributed Resources before Feeder
Comparison with Maximal Deferral Solution
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Sensitivity Analysis

Sensitivity analysis measures the dependence of the optimal solution on
the assumptions made by the planner. The concept of 2 sensitivity analysis is
simple: select an assumption, vary the value that describes the assumption, and
observe the change in the solution as a function of the varying vaiue of the
assumption. If the solution varies greatly, the sensitivity to the assumption is
important and the assumption must be explored further. If the solution does not
vary greatly, it is said to be robust and the exact value assumed to hold in the
analysis is not very important. We have designed our approach to be simple to
use in exploring sensitivities to assumptions.
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Figure 6. Optimal Policy with No Distributed Resources after Feeder
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A simple sensitivity analysis can be illustrated using the optimal solution
presented above. An important variable is the capital cost of distributed
resources. In the present solution, the average capital cost of distributed
resources is $115/kW. As this value is varied, the optimal solution does not
change until the average capital cost becomes approximately $260/kW. At that
cost, the optimal investment at the initial time is the substation. The sensitivity
analysis has revealed the amount of variation permitted in the capital cost of
distributed resources such that the optimal policy remains the same. This
establishes the robustness of the solution to this planning assumption.

MODEL IMPLEMENTATION

The model is implemented in C and is easily run from a PC in a
Windows 3.1 or Windows 95 environment. [he interface to the model is
graphical, with simple data formats on various screens. There are several ontput
reports, in addition to the presentation of the optimal policy.
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The policy summary (Figure 7) reports the probability that a particular
investment is made at any time during the planning period. The policy summary
for the example indicates that B1 is always installed sometime during the first
year, that S is installed sometime during the third year with probability 0.1602,
that the feeder is installed sometime in the fifth year with probability 0.7223 and
sometime in the ninth year with probability 0.1175, and that B4 is installed
sometime in the ninth year with probability 0.1190. Notice that these
probabilities need not sum to one, since the events in question are neither
mutually exclusive nor collectively exhaustive.

Figure 7. Policy Summary
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FREQUENCY OF ACTIONS BY YEAR

The risk profile of the optimal policy cost (Figure 8) is the probability
distribution of the cost of the optimal policy. The expected value of the cost is
the value of the objective function (3a), in this case $2,516. The values reported
in the profile reflect the full range of possible outcomes under the optimal

policy.
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Figure 8. Risk Profile

Cost Range Cumuiative Probability

1922 w0 1999 01175
1999 o 2076 01175
2076 1w 2153 0.1175
2153 1w 2230 0.1175
2230 w2307 0.1175
2307 w2384 0.7208
2384 o 2461 0.7208
2461 1o 2538 0.7208
2538 1w 2614 0.7208
2614 w0 2691 0.7208
2691 w0 2768 0.7208
2768 to 2845 0.8398
2845 w2922 0.8398
2922 to 2999 0.8398
2999 0 3076 0.8398
3076 1w 3153 0.8398
3153 10 3230 0.8398
3230 to 3307 0.8398
3307 w3384 0.8398
3384 t0 3461 1.0000

Mean = 2516.39

Standard Deviation = 462.62

Skewness = 1.10

CONCLUSIONS AND FURTHER WORK

We have described a model and a methodology that help DR planners
evaluate strategic policies under uncertainty. Application of the methodology will
not only lower utilities’ costs, but also help them prepare for the future with
contingency plans and a deeper undersianding of the opportunities and risks they
face. The logic of the process is tramsparent. and the results easy to
communicate and update as new information becoines available.

Our formulation of the DR problem responds to the need to evaluate
future options as uncertainty unfolds over time. For such problems, the joint
consideration of dynamics and uncertainty tends to make the problem much to0
large for conventional decision tree-type analysis, even with state-of-the-art
software. The presence of uncertainty and the need to evaluate strategic
management flexibility also takes the problem out of the scope of conventional
detailed deterministic engineering analyses.
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Future work can make the methodology even more useful. We are
currently incorporating more planning uncertainties into the model. Also, as
presently designed, the model relies on exogenous estimates of the effects of
capacity decisions on electrical system losses and unserved energy. While this
model wifl never be a substitute for a detailed engineering analysis, it would be
useful to have more network effects incorporated into the analysis. This could
serve as a high-level approximation of both losses and unserved energy in order
to determine sensitivity and whether a more detailed external analysis would
affect strategy. It would also be useful to expand the model to deal
simuitaneously with multiple service areas. Sometimes local areas are
interconnected physically; moreover, a major DR initiative impacting a group
of planning areas could have interrelated impacts through the overall impact on
system costs.
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